Учитель: Запишите с доски в тетрадь только показательные уравнения. Я подчеркну показательные уравнения.
Далее учащимся предлагается некоторая порция теоретического материала.
Рассмотрим уравнения, следующего вида:
,
,
,
.
Уравнения такого вида называются простейшими показательными уравнениями. Запишите это в тетрадь. Такие уравнения решаются с помощью свойства степени:
Степени с одинаковым основанием, а>0, а¹1 равны только тогда, когда равны их показатели.
Посмотрите на выписанные вами показательные уравнения. Какие из них являются простейшими уравнениями.
Ученики: Уравнение (3) 6 х = 36.
Учитель: Верно. Давайте его решим.
Учитель записывает решение уравнения на доске, ученики в тетради.
Учитель: Посмотрите на остальные показательные уравнения. Являются ли они простейшими?
Ученики: Нет.
Учитель: Как же мы будем их решать?
Итак, у нас возникла проблема: Как решать остальные показательные уравнения, которые не являются простейшими показательными уравнениями. Ваши предложения.
Возникает предположение (гипотеза): не простейшие показательные уравнения можно путем преобразований привести к уравнению вида , которое уже является простейшим, и которое мы умеем решать (формулируется учащимися, или учителем и учащимися, при затруднении последних).
(Замечание: эта гипотеза может возникнуть в результате решения уравнения ).
Далее, решаются все оставшиеся уравнения с использованием гипотезы, что и является в некотором роде ее практическим доказательством.
Закончить решение уравнений с доски можно общим выводом: решение любого показательного уравнения сводится к решению простейшего показательного уравнения.
Предлагается решить уравнение: №210 (6).
Далее предлагается решить уравнение №211(2) самостоятельно, предварительно побеседовав с учащимися о способе решения. Через пять минут учитель просит одного из учащихся сказать получившийся у него ответ, другие учащиеся проверяют правильность своего ответа.
Итоги подводятся серией вопросов: Какие мы сегодня уравнения учились решать? Какие виды уравнений еще вы знаете? Какая основная идея используется при решении любого показательного уравнения?
Запишите домашнее задание: §12, №209(1,2), №210(3), 211(1,4). Учитель комментирует домашнее задание.
Учитель: Подумайте, все ли вы сегодня поняли на уроке и почему? Если что-то было не понятно, то почему? Все ли вы усилия приложили, чтобы понять новый материал?
На данные вопросы можно побеседовать с учащимися.
Полезная информация:
Методика исследования ручной моторики у дошкольников
Выявление синкинезий. Используются пробы Заззо. Обе кисти ребёнка помещают, на чистый лист бумаги и обводят карандашом. Затем экспериментатор поочерёдно прикасается к каждому пальцу ребёнка, кроме четвёртого (движения четвёртого пальца и у здоровых детей сопровождается синкинезиями), и говорит: «По ...
Экспериментальное изучение двигательной активности детей 5–6 лет
Опытно-экспериментальная работа, проводилась в ДОУ «Огонек» с. Советское, Советского района с 17.01.11 г. по 16.06.11 г. с детьми 5–6 лет условно разделённых на две группы по 7 человек. В исследовании приняли участие дети старшей группы в количестве 14 человек. На констатирующем этапе проводилась р ...
Систематизация педагогического опыта по проблеме контроля знаний и умений
учащихся
Основная цель контроля знаний и умений состоит в обнаружении достижений, успехов учащихся; в указании путей совершенствования, углубления знаний, умений, с тем, чтобы создавались условия для последующего включения школьников в активную творческую деятельность. Эта цель в первую очередь связана с оп ...