Теоретические положения темы "Обыкновенные дроби"

Страница 4

.

Чтобы выполнить вычитание дробей с одинаковыми знаменателями, надо из числителя уменьшаемого вычесть числитель вычитаемого, оставив тот же знаменатель.

С помощью букв это правило записывается так:

,

где a>b или a = b, а c — натуральное число.

При вычитании дробей с одинаковыми знаменателями могут представиться случаи:

1. Из числа, содержащего целую и дробную части, вычитается натуральное число. В этом случае из целой части числа вычитается целое число, оставшееся целое число с дробью является остатком или разностью.

Пример:

.

2. Из числа, содержащего целую и дробную части, вычитается дробь, равная дроби уменьшаемого.

Пример:

.

3. Из числа, содержащего целую и дробную части, вычитается дробь, причем дробь уменьшаемого больше дроби вычитаемого. В этом случае из дроби вычитается дробь, оставшееся целое число с дробью является остатком. Если дробь остатка сократима, то ее надо сократить.

Пример:

.

4. Из числа, содержащего целую и дробную части, вычитается число, содержащее целую и дробную части, причем дробь уменьшаемого больше дроби вычитаемого. В этом случае сначала из целого числа вычитается целое, затем из дроби вычитается дробь и к оставшемуся целому прибавляется оставшаяся дробь. Пример:

.

Рассмотрим другие случаи вычитания дробей с одинаковыми знаменателями.

5. Из единицы вычитается дробь. Эта единица раздробляется в доли вычитаемого и из неправильной дроби вычитается дробь (вычитаемое).

Пример:

.

6. Из целого числа вычитается дробь. У целого числа занимается единица и раздробляется в доли вычитаемого, затем из неправильной дроби вычитается дробь (вычитаемое). Получившийся остаток дроби прибавляется к остатку целого числа. Пример:

7-.

7. Из числа, содержащего целую и дробную части, вычитается дробь, причем дробь уменьшаемого меньше дроби вычитаемого. У целого числа занимается единица, эта единица вместе с дробью обращается в неправильную дробь и из нее вычитается дробь (вычитаемое). К оставшемуся целому прибавляется оставшаяся дробь. Пример:

.

8. Уменьшаемое и вычитаемое — числа, содержащие целую и дробную части, причем дробь вычитаемого больше дроби уменьшаемого.

Пример:

4. Смешанные числа

Разделим 11 на 4. Получим неполное частное 2— это, целая часть и остаток 3 — это числитель дробной части. Знаменатель дробной части — число 4. Таким же образом выделим целые части из следующих дробей:

a) , так как 16:7 = 2, остаток 2(16 = 7×2 + 2);

Страницы: 1 2 3 4 5 6

Полезная информация:

Обучение иностранному языку и воспитание личности
Воспитание любви к труду, уважения к лю­дям труда, овладение трудовыми навыками является одним из главных компонентен ком­мунистического воспитания подрастающего по­коления в нашем обществе. В школе оно должно осуществляться при обучении всем учебным предметам, если труд рассматривать как работу, з ...

Общая характеристика метода учебного проектирования
Под учебным проектом понимается совместная обоснованная спланированная и осознанная деятельность обучаемых-партнеров, которая организована на основе телекоммуникационных технологий, имеет общую проблему, цель, согласованные методы и которая направлена на формирование у них определенной системы инте ...

Проблема изучения и развития памяти в трудах педагогов и психологов
Данная проблема интересовала множество отечественных и зарубежных ученых с древних времён и до настоящего времени. Вопросами изучения и развития памяти занимались Г. Эббингауз, П. Жане, К. Леви, Т. Рибо, А. Н. Леонтьев, А. А. Смирнов и другие. Трудно сказать точно, где и когда появились первые цело ...

Copyright © 2017-2021 - All Rights Reserved - www.jafoste.site