Понятие преобразования

Изложение теории геометрических преобразований начнём с общих определений.

Определение. Отображением f множества X в множество Y называется такое соответствие, при котором каждому элементу x множества X соответствует вполне определённый элемент y множества Y.

Oобозначение.f: X Y

Элемент y называется образом элемента x, а элемент x называется прообразом элемента y при отображении f.

y= f(x)

Определение. Отображение f: X Y называется

Инъективным (инъекцией), если каждым двум различным элементам множества X соответствуют два различных элемента множества Y.

Сюръективным (сюръекцией), если f(X) = Y, т. е. каждый элемент множества Y является образом, по крайней мере, одного элемента множества X.

Взаимно – однозначным или биективным (биекцией), если оно является одновременно сюръективным и инъективным.

Определение. Совокупность B всех элементов множества X, образами которых служат элементы множества B', являющегося подмножеством множества Y, называется полным прообразом множества B' при отображении f.

Определение. Если f(X)X, то говорят, что множество X отображается в себя. При f(X) =x говорят, что множество X отображается на себя.

Определение. Отображение f множества X на множество Y называется обратимым (взаимно - обратным), если образы любых двух различных элементов различны. В этом случае существует обратное отображение f-1 множества Y на множество X.

Определение. Отображение множества X на множество Y называется взаимнооднозначным, если каждому элементу множества X ставиться в соответствии один и только один элемент множества Y, и каждый элемент множества Y поставлен в соответствии одному и только одному элементу множества X.

Таким образом, при взаимнооднозначном отображении множества X на множество Y.

каждому элементу множества X, ставится в соответствии некоторый элемент множества Y;

различным элементам множества X, ставится в соответствии различные элементы множества Y;

каждый элемент множества X поставлен в соответствие некоторому элементу множества Y.

Необходимый и достаточный признак преобразования данного множества – одновременное выполнение двух условий:

Каждый элемент множества имеет единственный образ в этом множестве;

Каждый элемент данного множества имеет единственный прообраз в этом множестве.

Определение. Пусть f и g – два преобразования множества X и для произвольного xX, f(х)=y, g(y)=z, причём yX, zX. Определим отображение , являющееся преобразованием множества X. Преобразование . Называется композицией (произведением) преобразования f и преобразования g. Пишут =gf(=g×f).

(х)=(g×f)(x)=g(f(x))=g(y)=z

Определение. Два преобразования f1и f2 одного итого же множества X называются равными, совпадающими, если для любого xX имеет место f1(x)=f2(x).

Определение. Преобразование e множества X называется тождественным, если для любого xX, имеет место e(x)=x. Поэтому для любого преобразования f множества ef=fe=e.

Определение. При любом преобразовании f объединение множеств отображается на объединение их образов

f (AB)=f(A)f(B).

Определение. При любом преобразовании пересечение множеств отображается на пересечение образов этих множеств

Полезная информация:

Определение навыков чтения
Одна из важнейших задач начальной школы - формирование у детей навыка чтения, являющегося фундаментом всего последующего образования. Сформированный навык чтения включает в себя как минимум два основных компонента: а) технику чтения (правильное и быстрое восприятие и озвучивание слов, основанное на ...

Особенности развития монологической речи у учащихся младшего школьного возраста с ОНР III уровня
В теории и практике логопедии под общим недоразвитием речи у детей с нормальным слухом и первично сохранным интеллектом понимается такая форма речевой патологии, при которой нарушается формирование каждого из компонентов речевой системы: словарного запаса, грамматического строя, звукопроизношения. ...

Сравнительный анализ состояния фонематической системы у дошкольников с ОНР и нормальным речевым развитием.
Сравнительная количественная характеристика выполнения заданий по всем видам исследования фонематической системы у дошкольников (в%) представлена в таблице 9. Успешность выполнения заданий детьми контрольной группы на слуховое внимание – 100%, экспериментальной группы – 89%. Успешность выполнения з ...

Copyright © 2017-2021 - All Rights Reserved - www.jafoste.site